3y^2+5=53

Simple and best practice solution for 3y^2+5=53 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3y^2+5=53 equation:



3y^2+5=53
We move all terms to the left:
3y^2+5-(53)=0
We add all the numbers together, and all the variables
3y^2-48=0
a = 3; b = 0; c = -48;
Δ = b2-4ac
Δ = 02-4·3·(-48)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{576}=24$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*3}=\frac{-24}{6} =-4 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*3}=\frac{24}{6} =4 $

See similar equations:

| -3r+10=-2 | | -9-m=-23 | | x/0.8=3 | | 1+2v=-3 | | (x-8)^2=7 | | 3x+4(x-3)=5(2x-6)+9 | | 25-1÷9y^2=(5-1÷3y) | | 4/7x=2/x-5 | | 14x=2x^+5 | | x/6+1/3=5-x | | -4n+10=62 | | -9r+10=-2-6r | | 17x–42=2x–7 | | -2g-7=-g | | 5(2x-8)(x+1)=0 | | 7x–42=2x–7 | | -10-10u=-3-9u | | 3x-2.1/3=0.4 | | 3x^2-26=81 | | 3x+2x=15-10 | | 2(3y-3)-y+2=2(2y+4)+y-3 | | -5-6g=-g | | 1/4(z=2)=3/4 | | -55+6x=15x+89 | | 3z=2+32z+30 | | -3(w+3)=3w+27 | | 7x-70=12x+20 | | 6a+4-2a=12 | | 8x-48=24+10x | | 4u-8=7(u-2) | | -194-15x=-4x+125 | | 4y-2y^2=0 |

Equations solver categories